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1. Griffiths 3.1 We want to calculate the average potential on the surface of a sphere due to a point charge q
located somewhere within the sphere. Define our coordinates so that the sphere of radius R is centered at the
origin and the point charge lies on the z-axis a distance z from the origin. This calculation is identical to the
one on page 114 of the text, except that z < R, so when it comes time to evaluate the integral we will get a
term

√
(z −R)2 = |z −R| = R− z.

At any point on the sphere, the potential is V = 1
4πε0

q
r where r2 = R2 + z2 − 2Rz cos θ (see Figure 3.3 for the

setup, but imagine z < R). We need to calculate

Vave =
1

4πR2

q

4πε0

∫
R2 sin θ dθ dφ√

z2 +R2 − 2Rz cos θ
=

1
4πε0

q

2Rz

√
z2 +R2 − 2Rz cos θ

∣∣∣π
0

=
1

4πε0
q

2Rz

(√
z2 +R2 + 2Rz −

√
z2 +R2 − 2Rz

)
=

1
4πε0

q

2Rz

(√
(z +R)2 −

√
(z −R)2

)
=

1
4πε0

q

2Rz
(z +R− (R− z)) = q

4πε0R

Note the term R−z as mentioned above, since z < R for a charge inside the sphere. Also notice that the above
result doesn’t depend on the exact location of the point charge. Thus if there were more than one charge, we
would find Vave = Qenc

4πε0R . Putting this together with the result in the text for charges outside the sphere, we
have

Vave = Vcenter +
Qenc

4πε0R

2. Griffiths 3.4 We have a region of space enclosed by one or more boundaries, the charge density ρ is given
inside the region, and either V or ∂V

∂n is specified on each boundary. (The situation is much like Figure 3.6 in
the text, but we’re not assuming any surface is a conductor.) To prove that a solution is unique, we assume
that there are two different solutions and then show that they must be equal. So assume that there are two
different electric fields E1 and E2 in the region that satisfy

∇· E1 =
ρ

ε0
= −∇2V1 ∇· E2 =

ρ

ε0
= −∇2V2

Now let E3 = E1 − E2 and E3 = −∇V3 = −∇(V1 − V2). Subtracting the above equations we find ∇ · E3 =
∇· E1 − ∇· E2 = 0. Then

∇· (V3E3) = V3(∇· E3) +E3 · (∇V3) = E3 · (−E3) = −(E3)2

Now using the divergence theorem on the above equation for a surface Si that encloses a volume Vi, we have:∫
Si

V3E3 · da = −
∫
Vi

(E3)2 dτ. (1)

Now there are two cases. (I) If the potential is specified on the surface Si, then we must have the two different
potentials agree there, namely V1(Si) = V2(Si), which means∫

Si

V3E3 · da =
∫

Si

(V1 − V2)E3 · da = 0.

(II) If the normal derivative ∂V
∂n = ∇V · n̂ is specified on the surface Si, then we must have ∂V1

∂n (Si) = ∂V2
∂n (Si),

so∫
Si

V3E3 · da = −
∫

Si

V3∇(V1 − V2) · n̂da = −
∫

Si

V3(∇V1 · n̂ − ∇V2 · n̂)da = −
∫

Si

V3

(
∂V1

∂n
− ∂V2

∂n

)
da = 0.
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But looking back at equation (1) above, we see that both cases imply

0 =
∫
Vi

(E3)2 dτ =
∫
Vi

|E1 − E2|2 .

If we do the integral over all the surfaces in the region, the volume Vi is simply the total volume of the region.
Since the integrand, |E1−E2|2 ≥ 0, the only way the above equation can hold is if the integrand is in fact equal
to zero, which means E1 = E2. Thus the field is uniquely determined if the charge density is given everywhere
and either V or ∂V

∂n is specified on each boundary.

3. Griffiths 3.6 The xy plane is a grounded conductor, so it is at zero potential. We can reproduce this situation
by considering a similar setup without the conductor, but instead with a charge +2q at z = −d and a charge
−q at z = −3d. These image charges make the potential V = 0 anywhere in the xy plane, so it exactly matches
the boundary conditions in the original problem with the conductor. The force on the charge +q is then given
by Coulomb’s Law:

F =
1

4πε0

(
(q)(−q)
(6d)2

+
(q)(2q)
(4d)2

+
(q)(−2q)
(2d)2

)
ẑ =

1
4πε0

(
29q2

72d2

)
ẑ.

4. Griffiths 3.9 Again, we want to find some image charges that give V = 0 in the xy plane. So we put a uniform
line charge −λ parallel to the x-axis and a distance d directly below it.

(a) The potential due to a single infinite line charge is V (r) = − 2λ
4πε0

ln (r/r0) where r is the perpendicular
distance to the line charge and r0 is an arbitrary reference distance. Let’s choose the reference distance to
be d for both the positive and negative line charges; this automatically gives zero potential on the xy-plane.
We want to find the potential at an arbitrary point in the yz plane (the potential must be independent
of x because of translational symmetry in the x-direction). Let s+ and s− be the perpendicular distance
between the point P = (y, z) and the positive and negative line charges. The potential at P is the sum of
the potentials due to each line charge:

V (y, z) =
2λ
4πε0

(
ln
s−
d

− ln
s+
d

)
=

2λ
4πε0

ln
s−
s+

=
λ

4πε0
ln
s2−
s2+

=
λ

4πε0
ln

(
y2 + (z + d)2

y2 + (z − d)2
)

We can check our result by verifying that V (z = 0) = 0 as it must, since the conductor in the xy plane is
grounded.

(b) To find the charge density on the conducting plane of the original problem, we make use of Equation 2.49.
In this case the normal to the xy plane is in the z direction.

σ(y) = −ε0 ∂V
∂n

∣∣∣∣
z=0

= −ε0 ∂V
∂z

∣∣∣∣
z=0

= −ε0 λ

4πε0

(
2(z + d)

y2 + (z + d)2
− 2(z − d)
y2 + (z − d)2

)∣∣∣∣
z=0

= − λd

π(y2 + d2)

5. Griffiths 3.10 We want to find the potential in the first quadrant, so we are only allowed to add image charges
outside this region. We can add an image charge −q at (x, y) = (a,−b) to give zero potential along the x-axis.
To get zero potential along the y-axis we need to add two more image charges to balance the two charges we
have already. They should have opposite charge and be placed as shown in the figure below. Assume all the
charges lie in the xy plane. The potential is the sum of the contributions from the four charges:

V (x, y, z) =
1

4πε0

[
q√

(x− a)2 + (y − b)2 + z2 +
q√

(x+ a)2 + (y + b)2 + z2

− q√
(x+ a)2 + (y − b)2 + z2 − q√

(x− a)2 + (y + b)2 + z2

]
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Problem 5.  Griffiths 3.10

The force on q due to the conducting planes is the same as the force on q due to the image charges, which is
a sum of three contributions. But we need to remember that the force is a vector and keep track of all three
components. First of all, since the charges all lie in the xy plane, there is no z-component: Fz = 0. The other
components follow from Coulomb’s law and breaking the force vectors into components.

Fx =
1

4πε0

[−q2
4a2

+
q2

4(a2 + b2)
a√

a2 + b2

]
Fy =

1
4πε0

[−q2
4b2

+
q2

4(a2 + b2)
b√

a2 + b2

]

The easiest way to find the work needed to bring the charge q in from infinity into the corner made by the
conducting planes is to compute the total work needed to bring together the collection of image charges and
then divide by 4, because we don’t count the work needed to bring in the image charges, for in the original
problem the only other charges present are those induced in the conductors, but the induced charge comes “for
free” because conductors are equipotential surfaces. Thus the work to bring in the single charge q is (using
equation 2.40 and multiplying by 1/4):

W =
1
4

1
4πε0

(
− q

2

2a
− q

2

2b
+

q2

2
√
a2 + b2

− q2

2a
− q

2

2b
+

q2

2
√
a2 + b2

)
= − q2

16πε0

(
1
a
+

1
b
− 1√

a2 + b2

)

This method would work for any angle which evenly divides 360◦, namely 360◦/2n for n = 1, 2, 3, . . ..

6. Griffiths 3.14

(a) In this problem, the pipe is infinite in the z-direction, so there can be no dependence on z because of the
symmetry. Thus we are left with solving Laplace’s equation in two dimensions:

∇2V =
∂2V

∂x2
+
∂2V

∂y2
= 0

Using separation of variables, we assume V (x, y) = X(x)Y (y). Plugging into the above equation, and
letting primes denote derivatives of single variable functions with respect to their argument, we get

Y (y)X ′′(x) +X(x)Y ′′(y) = 0 ⇒ 1
X
X ′′(x) +

1
Y
Y ′′(y) = 0

In order fo this equation to hold for all x and y, we must have both terms equal to constants. Since the
potential must vanish at y = 0 and y = a, it makes sense to use sines and cosines in the y-direction, which
means we want to put a negative constant in the y-equation.

1
Y
Y ′′(y) = −k2 1

X
X ′′(x) = k2 for k constant

The solutions for the y equation give Y (y) = A sin ky+B cos ky. For the x equation, we need it to vanish
at x = 0, so lets choose hyperbolic trig functions instead of exponentials: X(x) = C sinh kx+D cosh kx.
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Thus V (x, y) = (A sin ky + B cos ky)(C sinh kx + D cosh kx). Now we need to choose the coefficients
A,B,C,D to satisfy the boundary conditions. V (x, y = 0) = 0 means we need B = 0. V (x = 0, y) = 0
means we need D = 0. V (x, y = a) = 0 means we need sin ka = 0 ⇒ ka = nπ for n = 1, 2, 3, . . .. The
most general solution at this stage is a linear combination of solutions for different n, where I’ve combined
the constants A and C into An:

V (x, y, z) =
∞∑

n=1

An sinh
(nπx
a

)
sin

(nπy
a

)

To determine the An we need the last boundary condition, V (x = b, y) =
∑∞

n=1An sinh
(

nπb
a

)
sin

(
nπy

a

)
=

V0(y). Using Fourier’s trick, we multiply both sides by sin
(

mπy
a

)
and integrate from 0 to a. This gives

Am sinh
(
nπb

a

)
=

2
a

∫ a

0

V0(y) sin
(mπy
a

)
dy ⇒ An =

2
a sinh(nπb/a)

∫ ∞

0

V0(y) sin
(nπy
a

)
dy

Thus the equation for V (x, y, z) together with the formula for An gives a general formula for the potential
within the pipe.

(b) With V0(y) = V0 = constant, we find

An =
2

a sinh(nπb/a)
V0

∫ ∞

0

sin
(nπy
a

)
dy =

2V0

a sinh(nπb/a)

{
0, if n is even,
2a
nπ , if n is odd.

So we find
V (x, y) =

4V0

π

∑
n=1,3,5,...

sinh(nπx/a) sin(nπy/a)
n sinh(nπb/a)

.

7. Griffiths 3.15 Another problem where we need to use separation of variables, but this time with all three
dimensions. Proceeding as before, we assume V (x, y, z) = X(x)Y (y)Z(z) and plug this into Laplace’s equation,
to find

1
X
X ′′(x) +

1
Y
Y ′′(y) +

1
Z
Z ′′(z) = 0.

Each of these terms must be constant, and the sum of the three constants must be zero. We want to choose the
constants appropriately by looking at the boundary conditions. In the x and y directions there are grounded
plates at 0 and a, which means the solutions will be sines and cosines in those directions, so we choose the
constants for the X and Y terms to be negative. In order to add to zero, the other constant must be positive.

1
X
X ′′(x) = −k2 1

Y
Y ′′(y) = −l2 1

Z
Z ′′(z) = k2 + l2 for k, l constants

Now we can write down the general solutions to these equations. Since Z must vanish at z = 0, it is easier to
write down the solution in terms of hyperbolic trig functions instead of real exponentials.

X(x) = A sin kx+B cos kx, Y (y) = C sin ly +D cos ly, Z(z) = E sinh(z
√
k2 + l2) + F cosh(z

√
k2 + l2)

The boundary conditions tell us V (0, y, z) = V (x, 0, z) = V (x, y, 0), so to make this hold for all values of the
other variables, we must have B = D = F = 0. Then V (a, y, z) = V (x, a, z) = 0 requires k = nπ/a and
l = mπ/a for positive integers n and m. So at this stage, the most general solution is a linear combination of
solutions for all n and m.

V (x, y, z) =
∞∑

n=1

∞∑
m=1

An,m sin
(nπx
a

)
sin

(mπy
a

)
sinh

(
πz

√
n2 +m2

a

)

The only thing that remains is to fix the constants An,m by using the last boundary condition: V (x, y, a) = V0.
Using Fourier’s trick, we set z = a, multiply both sides by 2

a sin(n
′πx/a) 2

a sin(m
′πy/a) and integrate over both

x and y from 0 to a. This will pick out the coefficient An′,m′ .

An′,m′ sinh(π
√
n′2 +m′2) =

(
2
a

)2

V0

∫ a

0

∫ a

0

sin
(
n′πx
a

)
sin

(
m′πy
a

)
dx dy =

{
0, if n′ or m′is even,

16V0
π2n′m′ , if both are odd.
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The above equation gives us An,m, which we can plug into the double sum above. The final solution is

V (x, y, z) =
16V0

π2

∑
odd n

∑
odd m

1
nm

sin
(nπx
a

)
sin

(mπy
a

) sinh(πz√n2 +m2/a)
sinh(π

√
n2 +m2)

.

8. Griffiths 3.43

(a) To use the hint, we need to figure out what it means to integrate by parts in three dimensions. We can
work it out starting from vector identity (5) in the front cover of Griffiths. With a scalar function V and
a vector function E the identity can be written

E · (∇V ) = ∇· (VE)− V (∇· E).
Now we integrate both sides over a volume V with surface S and use the divergence theorem on the first
term on the right hand side. This yields a formula for three-dimensional integration by parts:∫

V
E · (∇V ) dτ =

∫
S

VE · da −
∫
V
V (∇· E) dτ

Now assume we have two completely different systems, numbered 1 and 2, each of which has a certain
charge density ρ, potential V and electric field E. Following the hint we will integrate E1 ·E2 in two ways.∫
V

E1 ·E2 dτ = −
∫
V
(∇V1) ·E2 dτ = −

∫
S

V1E2 · da+
∫
V
V1(∇·E2) dτ = −

∫
S

V1E2 · da+
∫
V
V1ρ2/ε0 dτ

If we assume that the charge distributions are localized (i.e. do not extend to infinity) then we can take
our volume to be all of space, which means that the surface S is at infinity, where the potential V1 falls
off to zero. So the surface integral vanishes, leaving∫

V
E1 · E2 dτ =

1
ε0

∫
V
V1ρ2 dτ

We can do exactly the same manipulations after replacing E2 with −∇V2, so we’ll arrive at the same
result with the labels 1 and 2 switched. So we conclude

ε0

∫
V

E1 · E2 dτ =
∫
V
V1ρ2 dτ =

∫
V
V2ρ1 dτ

(b) Now we want to apply the above result to a specific situation. It will be less confusing if I call the
conductors a and b instead of 1 and 2. In the first system we have two conductors and we put a charge
Q on conductor a, and let Vab be the potential at conductor b. So in this system ρ1 is zero everywhere
except on conductor a, where there is total charge Q distributed in some complicated way. But this means
that

∫
V ρ1 dτ = Q. The potential in this system is complicated. The only place we know what it is is on

conductor b, where V1 is a constant, V1 = Vab.

Now consider the second system. It consists of the same two conductors a and b in the same positions,
but this time we put charge Q on conductor b and call the potential at conductor a Vba. Here, ρ2 is zero
everywhere except on conductor b. But we know

∫
V ρ2 dτ = Q. The potential is complicated, and all we

know is that on conductor a it is constant and equal to Vba.

Now we apply Green’s reciprocity theorem. When we calculate
∫
ρ1V2 dτ , ρ1 vanishes everywhere except

conductor a, but that is exactly where we know what V2 is; it’s a constant equal to Vba. Thus∫
ρ1V2 dτ = Vba

∫
ρ1 dτ = VbaQ.

But we also have ∫
ρ2V1 dτ = Vab

∫
ρ2 dτ = VabQ,

where again we could do the integral because ρ2 is zero everywhere except on conductor b where V1 = Vab.
The Q’s cancel, leaving us with the result Vab = Vba, or in the notation of the problem, V12 = V21.
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